Pentaguark Search at HERA-B

Karl-Tasso knöpfle for the HERA-B collaboration

The Prediction

The anti-decuplet proposed by Diakonov, Petrov & Polyakov (Z.Phys.A359 (1997) 305) with the three exotic baryons at the corners - requiring the indicated five valence quarks - and their decay modes. Masses in MeV are given in parentheses.

Most exciting for experimental investigations is the prediction of a width of less than 15 MeV for the Θ ⁺(1530) state.

Recent Experimental Evidence

O⁺: Evidence for a new exotic state at ~1540 MeV in the pK⁰ and nK⁺ channels with a width of less than 25 MeV has been reported from experiments using incident beams of real and quasi-real photons, kaons, and (anti-)neutrinos. Best constraints on its width come from a re-analysis of K+d and K+p scattering indicating that the width should be less than 'a few MeV'.

Reaction	E(beam)/GeV	Mass/MeV	Experiment / Reference
$C(\gamma,K^+K^-)X$	1.5 - 2.4	1540±10	SPring8 / PRL91 (2003) 012002.
$d(\gamma,K^+K^-p)[n]$	<3.1	1542±5	CLAS / hep-ex/0307018.
$p(\gamma,K^{+}K^{0})[n]$	1.74 - 2.6	1540±4±2	SAPHIR / PL572 (2003) 127.
Xe(K ⁺ ,K ⁰ p)Xe'	0.5	1539±2	DIANA / Yad.Fiz.66 (2003) 1763.
$p,d,Ne(v,K^{0}p)X$	37-137	1533±5	ITEP / hep-ex/0309042.
$p(\gamma,K^{+}K^{-}\pi^{+})[n]$	3 - 5.47	1550±10	CLAS / hep/ex033046.
d(e,K ⁰ p)X	27.6	1528±2.6±2.1	HERMES / hep/ex0312044.
p(p,Ξ⁻ π⁻)X	158	1862±2	NA49 / hep/ex0310014.

E⁻⁻: Evidence for a second new exotic state at ~1862 MeV with a width of less than 18 MeV in the Ξ⁻ π⁻ channel has been reported by the NA49 collaboration in p-p collisions. At the same mass, a peak is seen also in the Ξ⁻ π⁺ channel (hep-ex/0310014). These peaks are candidates for the exotic Ξ⁻⁻(I=3/2) baryon and the Ξ⁰ member of this isospin quartet.

Open Topics & Possible HERA-B Contributions

- Confirmation of pentaquark candidate signals beyond any doubt. → HERA-B search profits from huge minimum bias sample; with 10 times the statistics, scrutiny of NA49 result seems straightforward.
- Measurement of spin, parity, width, and cross section → HERA-B is able to study at mid-rapidity pentaquark signals simultaneously in various final states with a mass resolution of a few MeV.
- Understand production mechanism. → HERA-B can provide relative particle yields at mid-rapidity.

Relative yields of Θ^+ to $\Lambda(1520)$ production have been predicted for heavy ion collisions assuming statistical hadronization (Letessier et al. hep-ph/0310188 - see figure!). Becattini et al. (hep-ph/0310049) obtain similar results and predict in addition the $\Theta^+/\Lambda(1520)$ yield for p+p collisions at \sqrt{s} =17.2 GeV (see green dot!).

The HERA-B Forward Spectrometer

- Interaction of 920 GeV/c protons with C, Ti and W target wires at proton storage ring HERA.
- Large aperture (15 160 (v) resp. 250 (h) mrad) and high resolution spectrometer.
- Good particle identification (e, μ , π , K, p) by RICH and muon filter,
- Subdetectors used in present study: silicon vertex detector, tracker, RICH
- 1 kHz data acquisition rate for minimum bias sample.
- Excellent proton identification for momenta from 20 to 55 GeV/c.

RICH particle identification (PID) probabilities

Mass resolution is $\sigma = 3.2\pm0.2$ MeV

The Data Sample

A sample of more than 160 millions of p + A minimum bias events taken in 2002/03 on Carbon (76M), Titanium (16M) and Tungsten (72M) targets was used for this analysis.

Selection criteria for K_s and Λ (distance of closest approach < 0.7mm, and ct pt > 0.05 cm GeV/c) remove 90% of background and keep 95% of signal. — Ξ signals are selected by requesting that none of the decay products points to the primary vertex while the Ξ itself must point to the primary vertex. For more details see adjacent poster [Strange 9] by T. Zivko!

Pentaquark search in pK_s final state in p+C collisions

Strategy: exploit huge MinBias statistics on Ks and apply strong RICH PID on proton.

Applied cuts:

- detached K_s vertex
- A contamination removed
- primary vertex request
- proton likelihood > 0.95

Performance of PID checked on reconstruction of $\Lambda(1520) \rightarrow pK^-$ Reflections of indicated resonances included in background shape.

Many alternative search strategies:

- track multiplicity cuts on C, Ti and W data
- Λ or Σ tag requirement with & w/o multiplicity cut
- detached vertex request
- relaxation of proton momentum cut & PID

Quantitative Results of Θ⁺ Search

- At midrapidity, the sensitivity in BR dσ/dx is better than 5 μbarn/nucleon for a narrow state. An upper limit for the cross section will be provided.
- The geometrical acceptance for pK_S, i.e. Θ^+ (1540), and Λ (1520) is very similar at mid-rapidity, see figure! A preliminary value for the upper limit of the relative yield Θ^+/Λ (1520) at mid-rapidity is 2-10⁻³ at 95% CL.
- This relative Θ^+/Λ yield is significantly lower than the statistical hadronization model prediction of ~0.6 for p-p collisions at \sqrt{s} ~17 GeV (Becattini etal.hep-ph/0310049).

p + A -> Ξπ @ √41.6 GeV 4000 Ξ-π++Ξ+π-=°(4530) 3500 3000 2500 2000 1500 entries / 10 MeV/c² 1000 green area: background from 500 event mixing 1.8 1.9 4000 $\Xi^*\pi^* + \Xi^*\pi^*$ 3500 3000 2500 no narrow signal 2000 visible! 1500 1000 green area: background from 500 event mixing 1.8 $\Xi \pi$ invariant mass (GeV/c²)

HERA-B Results:

- In $\Xi^*\pi^*$ channel, prominent $\Xi^0(1530)$ signal and possible weak evidence for known higher Ξ^* resonances.
- In Ξ π channel, **no evidence** for narrow signal between 1.8 and 1.9 GeV. Sensitivity for a narrow Ξ (1862) signal at mid-rapidity is in the order of Br · do/dx ~ 10 µbarn/nucleon.
- Preliminary values for the upper limits of the relative production yields $\Xi^{--}(1862) / \Xi^{0}(1530)$ resp. $\Xi^{++}(1862) / \Xi^{0}(1530)$ are 0.04 and 0.055.
- Sensitivity reached to test predictions of Letessier et al., hep-ph/0310188.

NB: In Σ ⁻+A collisions, WA89 (EPJ C5 (1998) 621) sees in the Ξ ⁻ π ⁺ channel the Ξ ⁰(1530) (~63k decays) and the Ξ ⁰(1690) states – but no statistically significant signal at 1862 MeV.

PQ search in = TT and = TT resp. C.C. final states

Conclusions on HERA-B Pentaquark Search

- Exploited large statistics of min. bias sample and high detector resolution.
- Strong signals from $\Lambda(1520) \to pK^*$ and $\Xi^0(1530) \to \Xi^* \pi^+$ reconstructed.
- No evidence for narrow pentaquark signals in pK_s or in Ξ⁻π⁻ channels.
- Sensitivity of Br·dσ/dy to a Θ⁺(1540) signal is better than 5 µbarn/nucleon.
- At mid-rapidity, the relative yield ratio $\Theta^+(1540)$ / $\Lambda(1520)$ is < 0.002.
- At mid-rapidity, the relative yield ratio Ξ⁻⁻(1862) / Ξ⁰(1530) is < 0.04.
- More systematic studies and cross section evaluation in progress.
- If existent, pentaquarks seem to exhibit also exotic production mechanisms.